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I. INTRODUCTION

In the past several years it has been demonstrated both
experimentally and theoretically that the laser cooling of
neutral atoms can lead to an equilibrium atomic kinetic
energy £ much smaller than that given by the Doppler
limit for two-level atoms, that is I < hTY, where T is
the spontancous decay rate of an excited atomic state. It
has been shown that the sub-Doppler-limit laser cooling
is directly related to effects arising from the multilevel
structure of the atomic ground state (Refs. [1-7]). Effi-
cient. sub-Doppler-limit cooling is obtained nsing a very
weak laser field satisfying

[P 841, (1.1)
where f = Epu/h is the Rabi frequency, and ;e the dipole
moment of the atomic transition. The laser field has an
amplitude I and a frequency wy, detuned from the atomic
resonant frequency w, by an amount é given by

§=w; —wy. (1.2)

Although experiments are carried out for three- [8-11]
and two-dimensional {12] field configurations, detailed
analytical calculations that have been performed for one-
dimensional cooling [1, 2, 4] (an atom is driven by a pair
of two counterpropagating laser beams) give a fairly ac-
curate description of the major features of the cooling
process. It has heen shown that sub-Doppler-limit laser
cooling is produced in the so-called lin Llin configuration,
when the laser field consists of a pair of counterpropa-
gating heams having orthogonal polarizations. For this
configuration, the polarization gradient. of the laser field
plays a central role in the cooling process. 'This gra-
dieut results in different, optical pumping rates and ac
Stark shifts of the ground-state sublevels, hoth of which
are spatially modulated. When an atom moves with a
nonzero velocity along the laser-beam direetion, it enn
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A theoretical analysis is given for one-dimensional laser cooling below the Doppler limit of J = 12-
ground-state atoms. The laser field consists of a pair of counterpropagating, linearly polarized, low-
power beams, whose polarization directions differ by an angle § (0 < 8 < x/2). For 8 €« 1, the
effective optical-pumping time is shown to increase strongly near the nodes of the standing wave,
and the cooling force can be much iarger than that for § = /2. Moreover, for 8 & 1, it can be
shown that the stimulated p. rt of the atomic diffusion is reduced considerably as compared with

. that for # = =/2. As a consequruce it is possible to achieve an equilibrium atomic distribution
‘that, for & < 1, is characterized by a mean kinetic energy that i: lower than that predicted to
occur for 6 = x/2. The equilibrinm velocity distribution is not necessarily Maxwellian, and thus the
temperature of the atomic ensemble may not be well defined. The achievable kinetic energy is so % -

small that the cooled atoms may be trapped in the vicinity of the laser-field nodes. _-_'_C [
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be optically pumped, on average, from ac-Stark-shifted
levels of lower energy to ac-Stark-shifted levels of higher
energy, provided the sign of the atom-field detuning is
chosen properly (so-called Sisyphus effect {1]). This op-
tical pumping results in a damping of the atomic veloc-
ity. In general, the larger the spatial modulation of the
difference in ac Stark shi.ts between the levels and the
longer the optical pumping time, the stronger the fric-
tional damping force. For weak fields, the optical pump-
ing time 7, can be made much larger than the excited-
. state lifetime '~} resulting in a friction force that, for
slow atoms, is much stronger than that in the case of
Doppler cooling.

In the case of parallel linear polarizations for the fields,
there is no field polarization gradient and the friction
force is similar to that “or Doppler cooling. One might
think that as the rotati~n angle 6 between the field’s po-
larization vectors varies from 0 to 7 /2, the effectiveness
of sub-Doppler-limit cooling would gradually increase,
achieving its maximum for § = 7 /2. This conclusion is
not necessarily correct. For small angles, 0 < 1, the in-
tensity of the laser field varies considerably in space, and
the optical pumpine time strongly depends on the p
tion of the atom. A though the ac Stark shifts diffe. only
slightly for small 6, the fact that the optical-pumping
time is increased significantly near regions of low field in-
tensity can lead to a cooling force much stronger than
that corresponding to 0 = =/2. Morcover, owing to
the decrease in the difference of ac Stark shifts, the mo-
mentum diffusion coeflicient that characterizes stochastic
heating of atoms is much smaller for small angles than for
0 = x/2. The increase of the force and decrease of the dif-
fusion may eventually lead to a lower equilibrium atomic
kinetic energy for smaller angles, than for ¢ = %, fora
range of field intensities. 1t should b~ noted, however,
that, if the ficld intensities are choser to minimize the
atomic kinetic energy, optimal cooling ccurs for 0 = 3
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It is the purpose of this paper to derive equations de-
scribing laser cooling of atoms having a J = % ground
state for arbitrary relative polarization angle 9. In de-
riving the results, one finds that standard computational
techniques mvolving continued fractions or iterative so-
tutions are not practical for a range of atomic velocities.
An alternative analytical approach is used to solve lor
the atomic-state density-matrix elemeunts.

In Sec. 11 a qualitative picture of sub-Doppler-limit
cooling is given for an arbitrary relative polarization an-
gle 0 between the fields. The Fokker-Planck equation for
the density matrix in the Wigner representation is de-
rived in Sec. 111. The results for the force, diffusion, and
achievable temperatures are discussed in Sec. 1V. Conse-
quences and implications of the results obtained in this
paper and related phenoniena are discussed in Sec. V.

II. QUALITATIVE PICTURE

The laser field is represented by a pair of plane waves
counterpropagating i the : direction. The direction of
linear polarization of each field is shown in Fig. 1. The
total electric-field amplitude i given by

E(t:v) = e (Ee™ ™% L ooy 4 eal Ee™™ % L o).

(2.1)
where the real amplitude E does not vary with time.
In general, the unit polarization vectors e; and e, have
different directions, so that

(2.2)

e; =cos—e; +sincey,
2 27

€y =COs —e; — SiN =gy, (2.3)
2 2

where the angle 6 between the polarization vectors is re-

stricted to 0 < 0 < 7/2.

The laser fields interact with an ensemble of atoms
whose ground states g are characterized by total angular
momentum J, = 1/2. The ground states are linked by
the nearly resonant laser fields to exeited states ¢ having
total angular momentum J, = 1/2 or 3/2 [sce Figs. 2(a)
and 2(b), respectively]. Both cases are similar in many
respects, To be specific. in the qualitative discussion we

FIG. 1.
polarized ficlds counterpropagate in the @ dircction with an
angle 8 between their polarization vectors,

One-dimensional field conbguration. Two lincarl
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(a)

e_x/2 e_?_l/z e+3/2

1 1 1 1

9_y, 941,

(b)
FIG. 2. Atomic level scheme and Clebsch-Gordan coefli-
cients for ia) J =1 . J = f and (Y J, =4 —J =42

transitions.

consider the case J. = 1/2.

It 1s convenient to represent the field (2.1) as a sum of
two circularly polarized fields with polarizations e4 such
that

Qi:%ﬁ_ (2.1)

and amplitudes £y given by

¢
Fy ::F\,/i[f(o.s <k:i§>(—’“'. (-

1<
1

This system can be regarded as consisting of two two-
level subsystems: g — 1/2 «— ¢1/2 and ¢1/2 — ¢ — 1/2,
driven by the standing waves Eg given by Eq. (2.5) and
linked to cach other by the transitions involving emission
of spontancous photons.

The force exerted by the fields on the atom is given by

. dH¢
r= (-2

where I, is the atom-field coupling given by Eq. (AD)
of the Appendix, and where () indicates a gnantum me-
chanical average. In the weak-field limit defined by (1.1).
one can adiabatically eliminate atomic density-matrix el
ements involving the excited state and obtain the force
in the forn

(2.6)

= ]';xt + F,m. (")7)
where
" 2ok [
Frg = -2 = ks costl sin(2k ) 28

Tl T3

and
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Fint F+ﬂ+ + I -
WEk 2

= ——:,’—M,,— sin @ cos(2k )11
3(6% 4+ 2 /4)

(2.9)

The quantities appearing in Eqgs. (2.8) and (2.9) are de-
fined as follows: the Rabi frequency f has the form
= v"EE;t/h; Uy 1s an effective potential given by

hef?

[;' I e———
O 382+ 12/4)

cosfheos(2hz): (2.10)

Fy and FL are equal to

2hkeé f*
Fp=-F_ = —msiIIOC()S(ZA':): (2.11)
p+ (p-)1s the population of the my; = 1/2 (;my = —1/2)

ground-state magnetic sublevel; and IT is the population
difference

H=p, —p_. (2.12)

with the weak-field limit used to derive

the ground-state sublevel population is con-

('onsistent
Eq.(2.7),
served, 1.¢

P+ +p- =1 (2.13)

Equation (2
velocities,

7Y is vahid only in the lunit of relatively sinall

kel <« max(T'.|8]), (2.14)

which is the only limit considered in this paper.

According to Eq. (2.7), the force consists of two com-
ponents, an Yexternal” part . which is independem
of the internal state of the atom. and an “internal™ part
Fla. which depends on the population difference 1 of the
ground-state sublevels. The internal part can be written
i terms of a force Iy acting on cach sublevel popula-
tion. On averaging the force over an optical wavelength,
the contribution of the external part vanishes, while that
of the internal part depends on the Fourier component
of 11, which varies as cos(2k:). Thus a determination of
the spatially averaged force reduces to a determination
of T(z).

The population difference His driven by the differential
rate (124 — R_) at which atoms are optically pumped to

the + and — ground-state sublevels, where, as shown

explicitly in Sec. I, Ry are given by

2 S
Ry = ——2 - 17! kzt 10 215
¢ = pamtm = o o (215)
with

et 4 12/ )
™= T (2.16)
and fy = Eyp/h. The population dilference relaxes hack

towards equilibrinm at the rate (12, + Z_). Under the
weak-field condition (1.1), in steady state the population
difference evolves as

1
v = (R,

— — RO (R, F RN
[
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The driving term

Ry —R_ = T “lsin @ sin(2k: ) (2.18)

coincides with the difference of hight shifts of ground-state
sublevels. It is a periodic function of atomic position and
1s sinall in the vicinity of nodes (k= = 7/2+ 7n) and anti-
nodes (kz = mn) of the field {the positions of
and “antinodes™ to which we refer are those which would
appear for parallel-polarized fields). The driving term
vanishes for § = 0, implying that sub-Doppler-linnt cool-
ing does not occur for parallel polarizations of the fields.
For 0 # 0 the driving term increases with increasing
and reaches its maximum value for laser beams having
orthogonal polarization (0 = %).

The local optical relaxation rate Ry for the popula-
tion difference of the sublevels is equal to

Rioe = Ry + IR

“nodes”

= -rl,‘l[l + cos@eos(2k2)]. (2.19)

In the case of orthogonal polarization # = %, this rate
does not depend on position =. However. for small angles
0 < I,

Rioc 1s strongly position dvpeud( nt, and 1s very

small near the nodes of the field (that 1s. relaxation of

the ground-state sublevel population difference is slow in
these regions). Although the driving termn (2.18) is also
small in the vicnity of the nodes, the competition of these

two small quantities leads to a considerable gradient of

the population difference. It is the rapid variation of R,
near the field nodes that may lead to qll.l]l!‘\tl\( Iy new
features m laser cooling.

To understand the qualitative features of the spatially
averaged force, we first consider atoms having ¢ = 0. Al
though these atoms do not experience the averaged foree,
it follows from Egs. (2.7) and (2.17) that, for sulficiently
slow atoms, the spatially averaged foree can be obtained

in terms of the gradient of the population difference of

v =0 atoms. From Eq. (2
difference to be given by

A7) one finds this population

sin 0 sin 2k
1 4+ cosOcos2kz’
For 0 = x/2  lI(z. v = 0) = —=sin(242).

acteristic scale zo. over which 1 varies as

e = W /(dUL/dz)

e, v =0)= - (2.20)

Defining a char-

(21
one sees that s, ~ &7 when 0 = 7/2 (see curve | in Fig.
3). However, for simall angles 0 < 1. a new length seal
1s introduced into the problem. Far from the field nodes
(k= Z(1+20)) >0, n=0.41,..
difference is small:

M{z.v=0) = —0tank:,

) the population

(2.22)

0) takes the

while, in the vicinity of the nodes, H(z. ¢ =
form

e
0/ + R
where ¢ = bz — (14 20)7 /2. One can see from Fq (223)
and curve 2in Fig 3 that.m contrast to the @ = 7 /2 case,
for small @, near the nodes the population difference is of

order unity and varies very rapidly on a scale 3~ 2.

Hz,e=0) =

‘tion{ |

alabill

R ]

i Avafl |
i Sm
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FIG. 3. The population difference 11{z.¢ = 0) of the
ground-state sublevels as a function of kz for § = £ and
8 = 0.2. The value k= = Z corresponds to a ficld node.

Next we consider an atom moving in the = direction
with a very small velocity v, such that 1 does not vary
considerably during an optical pumping period, that is,

v K RioeTse-

In this limit the velocity-dependent part 11, of the pop-
ulation difference grating which gives rise to a non-
vanishing averaged force can be obtained from 12q. (2.17)
by a standard one-step iteration, and is given by

0, = —vR-! dll(z,v = 0) _ 2kvr,(cosf 4 cos 2kz)
loc dz (1 4 cos 0 cos 2kz)?

(2.25)

Atoms having velocities v satisfying inequality (2.24) give
rise to a spatially averaged force that varies linearly with
v (so-called “capture range” of the force [13]). One can
see from Eq. (2.23) that a decrease in the optical relax-
ation rate and an increase of the population difference
gradient lead to larger I, (see Fig. 1) and might thus

= r
= 5
e
=4
S e
[ : K t3 ¢ ‘
IS P
o ‘ :
x 2
-~ 4
o >
= \
=
-~ o L
’ 0 1 2 3
k2
FIG. 4. Velocity-dependent part of the population differ-

ence 11{z, r) that contributes to the spatially averaged foree,
as a function of kz for several values of # and o = ker, (1)
LO X 1075 (2) 8 = 02,0 = 1.0 x 107" (3)

=< n =
B=Z.a=5x10"% (1) =02n=0x]n""
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lead to stronger averaged force. Owing to the depen-
dence of Rjoc on 8, both the capture range defined by
(2.24) and the magnitude of the force depend strongly
on f.

For the fields with orthogonal polarization (8 = 7/2).
one has ngi = 7p, and Eq. (2.24) takes the form

a = kv, € 1 (2.206)
In this limit one obtains the well-known result [1] for the
friction force

Wk f26a

=330

(2.27)

For small 8, both the local optical relaxation rate
and the spatial scale over which the population differ-
ence varies decrease near the ficld nodes. so that Ry, ~
1'"02/'2 and z5c ~ 0/2. Tt follows from Eqgs.(2.19) and
(2.24) that the capture range is given by

a0 (2.28)
and is much smaller than that for # = Z. n this capture
range, however, the strong gradient of Il and long optical-
puimping time in the vicity of the field nodes give rise
to a spatially averaged force

. Ik F2a
oo lhkfea (2.29)
3062+ 12/
which 1s larger than that for 8 = L. For small 9 and ¢

the entire contribution to the force originates when an
atom moves near the field nodes.

The iterative approach used to arrive at Eq. (2.25) is
only applicable when condition (2.24) is satisfied. In the
case of orthogonal field polarization. condition (2.2} is
satisfied provided that o = ke, < 1t liowever for 0 < 1
this condition is satisfied only for o = kv, < 03, Thus
for 0 < 1 there exists a range of velocities

1> a> 0%, (2.30)

for which the iterative approach fails. These veiocities
are high enough to prevent the population difference of
the ground-state sublevels to undergo considerable re-
laxation durig the passage through the field node, but
low enough for this process to occur at a spatial scale
smaller than the optical wavelength. TFor this velocity
range, a theoretical approach based on a Fourier series
expansion for IT 1s not of much practical use ecither, since
the number of terms involved is prohibitively large. New
analytical techniques are needed. which are described in
the subsequent sections.

Nevertheless, it is possible to obtain a qualitative pic-
ture of the velocity dependence for the foree in the range
(2.3 by introducing the concept of an effective optical
relaxation rate Ryr detined by

{
/ I, -(1)dl! = 1, (231)
Conn

where t = (2 = z0)/v. and Ky, is given by Eq. (2.19).
Equation (2.31) simply states that the probability of op-
tical pumping in the time mterval (¢ - 1(’:”'.!) is equal
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to unity. For the range of atomic velocities satisfying in-
equalities (2.30), in the vicinity of the nodes, integration
of Eq. {2.31) leads to the effective optical relaxation rate

Reg ~ M + (30) ) < 17!, (2.32)
which does not depend on 8 and increases with increasing
velocity. The spatial scale of the population difference 1s
now given by z = vRG ~ al/3/k (see curve 4 in Fig.
4). The largest contribution to the spatially averaged
force is produced in a single optical-pumping cycle when
an atom passes the field node. In the range of velocities
(2.30) the averaged force is given by

hkf26sin @
3V3(62 4 T'2/4)

and is independent of v.

A graph of F vs 0 for small a < 1 is shown in Fig. 5.
The force first increases with increasing @, and reaches
its maximum value for a small angle ¢ ~ o'/3. Then
it decrcases, approaching the value F(0 = /2. v) as 0
tends to 7 /2.

We now turn our attention to the momentum diffusion
coefficient D, which consists of two parts:

Fa (2.33)

D = Doy + Ding. (2.34)

The first contribution Dy, is related to the fluctuations
concerned with emission of spontaneous photons. This
contribution is quite similar to the momentum diffusion
coefficient in a two-level system. For |ke] <« T, it de-
pends only slightly on angle and velocity. since the spe-
cific features of sub-Doppler-limit cooling and multilevel
dynamics do not play a significant role in the diffusion
processes brought about by these fluctuations. The av-
eraged contribution Dy, can be roughly estimated by

Dep ~ (2.35)

T

The second contribution D, 15 produced by the fluc-
tuations of the stimulated force exerted on the atom, and
1s given by

————— 77—
0.8

—_

"

b4

g

5

3

L]

o

=

0.4

w

o

&

o

w

00

FIG. 5. The spatially averaged laser cooling force as a

function of angle 8 for small a = kvr, = 1.0 x 15",

0
Dua= [ WFWF=1) = (FONF( = r)lir
-0
(2.36)

This contribution is directly related to the multilevel dy-
namics, since it is brought about by fluctuations in the
time periods an atom stays in sublevels m; = +1/2 of
the ground state. For relatively small velocities satisfying
the condition a <« 1, the correlation time of the forces
in Eq. (2.36) is given by Re_ﬂl and D;.q 1s approximately
equal to
Fi
R’
where F 1s given by Eq. (2.11).

For # « 1, the force F, is @ times smaller than that
for @ = %. On the other hand, in the vicinity of the field

nodes, Reg < rp'l. The overall effect is a decrease of the
averaged diffusion coefficient with decrcasing 6. given by

Ding = (2.37)

- 967 _ .
Dind({)v l') ~ FDsp (2-38)

for very slow atoms satisfying Eq. (2.28). and

= 0°6% .
Dina(0,v) ~ WDSP

(2.39)
for intermediate velocities (2.30). Thus. for small 0. the
induced momentum diffusion coefficient D,,4(0 < 1.v)
is much smaller than Dyng(6 = 7/2.¢). It also exhibits
significant dependence on velocity v in the range 0* <
a € 1. The consequences of the 6 dependences of F* and
D are discussed below.

III. EQUATIONS FOR THE GROUND-STATE
SUBLEVEL POPULATIONS

In this section. using the Wigner representation [14],
we derive the equations for the populations of the ground-
state sublevels. We consider atoms having ground- and
excited-state angular momenta J, = % and J, = % or g
Using the general equations {see, for instance. [14.4]) for
the density matrix p(z,p). where p = Mv is the atomic
momentum, and = is the center-of-mass position, and tak-
ing into account the weak-field condition (1.1). one can
adiabatically eliminate excited-state matrix elements and
obtain a closed set of equations for the density-matrix el-
ements of the ground state {1,4]. The derivation of the
equations is given in the Appendix and is quite similar
for the two values of J, . Assuming that the atomic mo-
mentum is much larger than that of the photon. that is

P> hi, (3.1)

one finds the following equations for the ground-state
sublevel populations:
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d arf? L [0 L (.0 3his
4, =2 (£ ke (22 ks pr -
a’t = 9 o) [ cos (*-z* )”*“‘” (i~z+ )"* i

Rk
20

for J, = . and
d e
at’* T 9(62 + 12/4)

Rk
40

for J, = 2, where d /dt = 8 /3t + vD /O:. Equations
(3.2) and (3.3) provide a complete description of the time
evolution of the atomic distribution of ground-state sub-
levels as a function of atomic center-of-mass position and
momentun, in the limit of weak field (1.1) and small pho-
ton momentum (3.1). The first two terms on the right-
hand side of the equations describe the spatially depen-
dent population exchange between the sublevels owing to
the optical pumping. The term with 3/dp can be inter-
preted as a gradient of an effective potential determined
by the spatially dependent ac Stark shifts of the levels,

hé f*

Sy = —————— cos(F0 + 2k: 3.4
= T 4 r2jq) CONFO 2k (34)
for /. = 3. and
hé f?
Sy = ~—————[cos(F0 + 2k: Jcos(0 + 2%z
o 12(6-’+(‘-’/4J[(0S($ F k) Beona0 4 2k2))
(3.95)
for J, = jf Finally, the terms containing the second

derivatives with respect to p correspond to the momen-
tum diffusion process caused by emission of spontancous
photons.

To find the atomic momentum and position distribu-
tions it is useful to introduce the probability density
(3.6)

vz, p) =psy +p-

for an atom to have momentum p and position =, and the
population difference density

Wep)=py —p-. (3.7)
Then. using Eq. (3.2) with J, = l, olle arrives at

{ Shie e ull
L—Lf :—-l- —-‘; cosfsin ’l\..—.—L—\llI()u)\ZA..{.
dt 7 1 ap p

K2 k2 a%y
— — N rngt) —_—
+ ) ((Z cos 2kz) e

—sinfsin 2kz Il)}
Op?

) )?
+— ([H — Il cos(F0 + 2/::)](,4 pft
dp*

Yo 0 " 0 3hké
os” (:FE + L-;> P4 + cos” (:&:E + k:) PF = T

+— ([70 ~ 13 cos(Fb + 2kz) — 27 cos(0 + 2k:)] 52

V. FINKELSTEIN, P. R. BERMAN, AND J. GUO 45

sin(F0 + 2.(-:)2-/—)3E
dp

‘os( 0 + 2k

]—}—’ﬁ)} (3.2)

[sin(F0 + 2kz) + 3sin(20 + 2k:)) djpi

e 2[6 + cos(8 + 2k:= )]i&i\]

P opT 7
(3.3)

and
d 1 . .
—=— -9 sinfsin2k: — (1 + cosfcos2k:)II
di T
: / |
+3hk6 sin @ cos ‘Zkzgz — cos @ sin 2k:6,—>
dp dp

Rk %11
+~l—k (2—3cosfcos2kz)—
5 ap?

97 o
—3sinfsin 2k:(0pl; ) :{ .

where the “optical pumping™ time 7, is defined by Eq.
(2.16). Similar equations can be obtained for J, =
using Eq. (3.3).

In general, Egs. (3.2) and (3.3) or (3.8) and (3.9) can-
not be further simplified. However, if the atomic kinetic
energy Er = p?/2M is much larger than the effective
potentials Sy, that isf

(3.9)

"‘I:»-

P 2héf*

el e 3.10
207~ 3062 4 T2/4) (3.10)
the atoms move almost freely and localization effects are
weak. This imiplies that the time scale 7 that character-
1izes the time variation of ¢°(z. p) satisfies the condition

Tk > 1. (3.1
As a consequence, the probability oz p) = py + p= de-
pends only slightly on 2. Below we neglected this de-
pendence [15]. The problen is then reduced to a deter-
mination of the atomic momentum distribution «(p) =
(=, p). To obtain ¥:(p) as a solution of Fq. (3.8), one
must know the population difference density 1(z.p). The
steady-state distribution for the population difference
Igg is established on a time scale h’fnl given by Eq.
(2.31). Although, as has been discussed in See T Ry
may vary significantly with atomic position and veloenty,
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1t can be shown (see below) that R:”l & re. In determin-
ing ¥ (p) from Eq. (3.8), one is then justified in replacing
Il in that equation by its steady-state value Hgg. 'Tak-

terms containing d11/0p. and 8%y /dp*and §*11/0p% in
Eq. (3.9) [owing to conditions (3.1) and (3.10), respec-
tively], one finds the steady-state solution of Eq. (3.9) in

mg into account the condition £ 3> 33 and neglecting  the form

J
| g ) 3hks L, Ov(z,
lss(z,p) = — dz’ | —sinOsin(2k: — Ne(z,p)+ ,, sinf cos(2hk: — = )(L(—p)->
2a Jo dp
X cxp(—(‘Zu)_' / [1 4 cosOcos(2hz — :")]d:”) . (3.12)
V]
where
a = ko, (3.13)

Substituting Iss(z, p) in the form (3.12) into Eq. (3.8) and neglecting derivatives of order higher than 2. one arrives
at a Fokker-Planck equation of the form

d d v 0
= —[=F ¢ d— + — (D)) . 314
(HU 0})[ FL+DIH(')])+6})( 'IQ)] ( )
where the force Fis given by
k6 f? Y
F= 3—(%{{2/4) [cos()sin‘zk: + (20)7 " sin® 0 cos 2k
o0 E
x / dz’' sin(2kz — ' Yexp [ —(20)7" ] (1 + cosf cos(2kz — =")}d=" ) |, (3.15)
0 0

the sub-Doppler-limit “stimulated” contribution D,,4 to the momentum diffusion produced by the fluctuations of the
instantaneous dipole forces by

Dmd =

i 3hkésin g
r

2 o0 2!
) cos ka/ dz' cos(2kz — 2') exp (—(201)‘1 / [1 + cosf cos(2kz — :”)]d:") , (3.16)
0 0

2am

and the “spontaneous” contribution Dgp to the momentum diffusion associated with emission of spontaneous photons

by

2k sin® 0sin 2z [

Dy, = l 2~ cosfcosZkz + u—- / dz'sin(2kz — z"Yexp | —(2a)7! / [1 + cosfcos(2kz — ="")|d=" |1 .
2Tp 2a 0 0]

{3.17)

Under assumption (3.10) considerable variation in atomic kinetic energy occurs on a time scale larger than (kv)~".

In other words, condition (3.11) is satisfied. In this limit, the force and diffusion averaged over a wavelength determine

the time evolution of the distribution ¥. Averaging Egs. (3.15)-(3.17) over a wavelength, and substituting the results
into Eq. (3.14), one can arrive at

@_ d dy d

= —[-F¢ "”__ "—Dsy’ 3.
B ap[ ¥ +D“‘ap +0,,( pU]. (3.18)
where the spatially averaged force s given by
hkf2ésin*0 ™ cos )
I = —ﬁ% /0 sin(2at)e 71, <“:: sin{o r)) dr, (3.19)
and the averaged diffusion coeflicients are
207k 20 P S0 s
Dy, = -‘)(6++lf—~’/_1_) {l + ll,\in‘ 0 /“ 7 [('us(‘.lnr)lu (N:: sm(nr)) -1 (((: sm(nr))} (Ir} . (3.20
REE2S f2sinto os () S
Dy = ll_(b—.'_{Tzl/“;)_ A =7 [('().\'(‘Jur)l(, (”:l .\'ill(nf)) + 1 <“” ~‘“|(”T)>] dr {(3.21)
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where Iy and I, are modified Bessel functions {16].

For J, = -g-, one can also obtain equations similar to Egs. (3.14) and (3.18). For example, the force F is given by

hké f?

LY —
3(82 + [2/4)

[2 cos 0 sin 2kz — (4a) ' sin® 0 cos 2k

S o
X / 2 sin(2kz — ') exp (—-(40)*1 / 1+ cosfcos(2k= — :”)]d:”)] . (3.22)
0 0
and the averaged force F by
. hkfsin®0 [ 0 .
F= 6)(—5;5{%2/47/0 sin{(dar)e™ "I, (C;i sm('Zur)) dr . (3.23)
For the sub-Doppler-limit stimulated part of the momentum diffusion coeflicients one finds
1 (3hkssing\’ o
Ding = 2ar, (3 ! 251“ ) cos ‘Zk:/O cos(2kz — z')exp (—~(4a)“£ [1 + cos 6 cos(2kz — z")]d:”) d=', (3.24)
and
N RPE26%f2sin® 0 [ osf 08 0
Dig = T(b?%/l_tl—)/o e [COSH(_)T)IU <(0; sm('.lur)) + 1 (3; Sil]('Z(hT))] dr. (3.25)
while the spontaneous contribution Dy, to the momentum diffusion is given by
hk? 2sin” 0 sin 2k =
Dy, = Uk 41—19c050c052k:—M—
40T, «
co 2!
X / dz"sin(2kz — 2"y exp (—(4&)" / (I + cos @ cos(2kz — 2")]dz” (3.26)
0 0
and

R2k2fer

(Dsp) = m {41 - 4Si1120A e 7 [COS(‘iGT)IU (

IV. DISCUSSION

In this section, if not stated otherwisc, we consider

Jo=1

.
A. Force and diffusion

For 6 = £ one can use Egs. (3.19) (3.21) to obtain
expressions for the force and momentum diffusion coefli-
cients in a closed form for arbitrary values of the dimen-
sionless velocity a = kvr,. For the averaged force one
recovers the well-known result {1]

. T 20k f2éa
Flo=<)=- - —. 4.1
( 2) 307+ I'2/4)(1 + 4a?) (+
The diffusion coefficients are given by
, T hek2e gt
Dypa(0==) = — - - 4.2
l( 2) a(d? + I/ + 14a?) (12)

and

s ) 0s
cosé sin('..’ur)) -1 ((05 sin(‘zur))] (Ir} . (3.27)
2a 2a

I)_ 20k [T < N ] )
2/ 7 982 412 /4) A1+ 102y /)
(1.3)

Dy, (0 =

and their qualitative behavior coincides with that of dif-
fusion coefficients obtained in Ref. [4].

For an arbitrary angle 8, it is possible to obtain an-
alytical expressions for the averaged force and diffusion
coefficients in the limiting cases of small and large veloe-
ities. Numerical solutions for the force and the diffusion
coefficients as a function of a are presented in Figs. t and
7, respectively.

1. Low velocities o« < 1

In this limit, for very low velocities

3

a L -,

5 (1)

one can take the integrals in Eqgs.(3.19) (3.21) to obtain
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n_ 20k froa (15)
T 3sin0(8% 4+ I'2/4) )
and
S " Rk fer
P = Dy + Dy !

« (24 sin® 0 +186"’ sin 0 )
1+sinf 2 1 +siné

(4.6)

The force increases and the diffusion coefficient decreases
gradually with decreasing 6.

In particular, for small angles § < | and very small
velocities satisfying (4.4), one finds

Fo_ 2hk f26a _ 3hk2év r
= 34T - or (1.7)

and

_ K2k 2 2
D= hkfF)(1+960) (48)

9(82 + 02/4 re

The force increases as 7! and the diffusion coefficient
decreases linearly with decreasing .

To determine the source of such a strong dependence
of the force and diffusion on 8, one can examine the ex-
pressions {3.15)-(3.17) for the nonaveraged force and dif-
fusion. If condition (4.4) is satisfied, one has

|
2hké f? . . sin 4k z 20 cos 2k z(cos 2k + cos )
F = —q——-—'f,,— cos Osin 2kz + sin? 0 | - " - ( TR {(1.9)
3(6% 4+ I'?/4) 2(1 4 cos 0 cos 2k z) (1 4+ cos @ cos 2kz)
2.0 T T T T T T
50.0 o . P 1
- : P 4
. F\\ ]
- F - \ ]
I / b \ N o= ¥
- - / 1 . \\ - 2 7
g C / % 4 0 Ol“\ \\ \\\ ~ i
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FIG. 6. Spatially averaged laser cooling force as a function
of a = kvr,. The different curves correspond to different an-
gles # between the fields' polarization directions. The atomie

transition occurs between two levels, each having total angn-

lar momentum J = —; and & = 5I". The force for very low

velocities is shown in more detail in (b).

05
() (b)

FIG. 7. The spatially averaged momentum diffusion coe f-
ficient as a function of o = kerp. The different curves cor-
respond to different angles @ between the ficlds” polarization
directions. The atomic transition occurs between two levels,
cach having total angular momentum J = % and & = 51
The momentum diffusion coeflicient for very low velocities is

shown in more detail in (b).
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For 0 « 1, far from the nodes of the standing wave [|kz—
7 (14 2n)| ~ 1] the velocity-dependent part of the force
(4.9) is of order 02hk%6v/T and is much smaller than
that of the force obtained for 6 = x/2. However, in the
vicinity of the nodes, where

c:k:—%(l—}-?n)«l, (1.10)

the force takes the form
o 2hkéf? (‘2((0?/4 - €%) _ 02a(0°/4 - c'-'))
J(B2+ U2/ \ (2 +0°/4) 2+ 0%/4)8
(1.11)

The first term in Eq. (4.11) is velocity independent and
corresponds to the gradient of the effective potential Uy
given by

2h6 f? . 0° 2 0
Jop = —el 2 n(e2 4+ 0%/0) ). 1.
Uetr 36T 1 T2/4) (( 21n(c +0/I)) (4.12)

The second, velocity-dependent, term can he seen in Fig.
4 (curve 2). In the very vicinity of the node ¢ & 0,1t
represents a very strong frictional {orce

24hk v

S ——'0—._,?—— \ (-1.13)
while for |e] > 0/2 it changes sign and leads to heating.
However, after averaging over the position around the
node the combined effect is still that of cooling given by
Eq. (1.7). Thus one can see that for small § a strong fric-
tional force is pioduced in vicinities close to the standing
wave nodes.

The nonaverased sub-Doppler-limit stimulated contri-
bution Ding to the momentum diffusion is proportional
to 0 far from the nodes and is much smaller than that
in the case 0 = 7/2. However, near the field nodes [ie.
when condition (4.10) is satisfied], Ding is given by

1 /3nké0\*® 1
D'"“:Tf( P )('-'+0'-'/4'

«Tp

(4.14)

For ¢ < 0, Dya(0 € 1) is of the order of D,{0 =
7/2) and provides the major contribution to the averaged
diffusion coeflicient (3.16).
For the intermediate range of velocitios
3

1>»a >'(_. (-1.15)
3
the averaged force takes the form
2hk 2807
PR LY b (i | (1.16)

VRN
Thus, for 03/6 < o < 1 the force (4.16) does not depend
on the velocity and decreases with decreasing 8. The
difTusion coeflicient varies as
Lk er - 9.546%0*
0(82 + I /4) I2al/d )

and decreases with decreasing 7 and increasing velocity.

D=

(1.17)

2. Large velocity, a » 1

In the high-velocity limit, the force takes the form
" Ohk f26sin® OhfiT6sin®

T Ga(84T2/4) T 2Tu(6% + T2/4)Y
which is valid for any angle #. The force (4.18) decreases
with decreasing 0.

The diffusion coeflicient is given by
b 2nc k2 fr . sin® @ . 186"’)]

= 967 + 12/4) [ * T6a? ( tT )]
and decreases with decreasing 0 and increasing velocity.

Results for the entire range of velocities are shown in
Figs. 6 and 7. The velocity dependence of the force in
the case of small angles 8 differs dramatically from that
obtained in the case § = x/2. For a given a the force
F(0 = n/2) is smaller than F(x/2 > 0 > o'/*). An
important new feature of the diffusion coefficient is the
strong dependence of its sub-Doppler-limit part Dipq on
angle 6. For 0 = x/2 and |6] > T this part is the domi-
nant one, as it is 8*/I'? times larger than the contribution
Dy, brought about by the emission of spontaneous pho-
tons. However, ynq decrcases with decreasing @, while
D;p does not vary significantly with 0. As a result, the
diffusion coefficient DD decreases with decreasing 0. More-
over, for a range ol angles 0 < 1, one finds

Dmd < 1)5|\

even for small velocities.

(4.18)

(4.19)

(1.20)

B. Equilibriuim momentum distribution

For Jo = 1 and & > 0, the equilibrium momentum
and spatial distribution Yeq{z,p) characterized by mean
kinetic energy Eeq = p2,/(2M) results from the balance
between the cooling force and diffusive heating. Rigor-
ously, the equilibrium distribution is a solution of Egs.
(3.2) and (3.3); however, it may be possible to approxi-
mate this distribution using the Fokker-Planck equation
(3.18) with a diffusion coeflicient D(0, p) and a drift tern
F(0,p). The resulting distribution ¥eq(p) is not necessar-
ily of Gaussian form. Introducing a dimensionless atomic
momentum
p

3= =,
hk

(1.21)

and neglecting the dependence of D, on velocity, one
finds the distribution g.q(3) to have the form

A g
Veq(B) = ¥1q(Q)exp <-l'k/ T)'(lr'jl> .
U B

Calculating the mean equilibrium knetic energy FElg as

(4.22)

Fa=En | Bweq(B)ds, (41.23)

-

where Ep = (hk)?/(2M) is the recoil energy, one arrives
at the results presented in Figs. 8 and 9.

The mean kinetic energy as a funcaion of dimensionless
laser field intensity [ defined by
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FIG. 8. Mean equilibrium kinetic energy Eeq in units of
L“k?/2M (M is atomic mass) as a function of a dimensioniess
ficld intensity I defined by I = |f]?Af/(3h6k?). The different
curves correspond to different angles 8. The atom-field con-
figuration is the same as that used to obtain Figs. 6 and 7.

— Us(0= 0.5 = 0) /25, = 1AL 9
1—U0(0—0.~—0)/2ER—-3,,“.._, (4.21)
is shown in Fig. 8 for
7/2> 0> /6. (4.25)

Assuming that |6] > T, and using expressions for /7 and
D in different velocity limits, one can get a qualitative
understanding of the results presented in this figure. For
# = w/2 one arrives at

d’eq(ﬂ) = d'eq(o)(l + 2;32/12)*ll4 (4.26)
and
]2
Foqg = ER . 1.27)
10000 :K T T T e
$ 1=810' ]
//4_‘ 4
A \ ~
5000 |- o
‘/// ]
o \*’/ d R
®
w k 210"
N AT -
] \ T
oL—1 1 AT T | 2+ = { ey g e
00 05 1.0 15
FIG. 9. Mean cquilibrium kinetic energy £eq in nnits of

12 k? /20 (M is atomic mass) as a function of 8. The different
curves correspond to a different dimensionless field intensity /
defined by I = [f?M/(3h6k?). The atom-field configuration

is the same as that used to obtain Figs. 6 and 7.

If 6 < x/2, for relatively small intensity I satisfying the
condition

5\ 2
(3—) > 1> 6sin"%0,

= (4.28)

one has

Yeq(B) = Yeq(0)[1 + 282/(Isin 0)%)~7 5614 (4.29)
and

I?sin® 0

Feq = Ep~———. 4.30
T "R sin?0-6 (4.30)
For 0 <« 1 and I satisfying
86 \? 36\°
—_— — 4.31
(rog) >>1>>(F) ; (4.31)
one arrives at
2 1/3
F-
Veq = Yeq(0) exp [—0.3 ( 6'-54) ] (4.32)
and
5.68 /o
Eeq & ER%-I‘/ (4.33)
For even higher intensities
86\’
I : 4.34
> (I‘sin"’ 0) ( )
the energy distribution takes the form
Yeq = Veq(0) exp(—B7/2Isin?0), (4.35)
and the mean kinetic energy is given by
Eeq = Erlsin®0. (4.36)

One can see from Fig. ' that the minimal intensity that
can still ensure an equ:librium energy distribution in-
creases with 0 as 6/sin” 8. The optimal cooling is ob-
tained for 06 = £ and I = 12. However, for smaller # and
higher intensities, the mean kinetic energy as a function
of I increases more slowly than for § = x/2, and in some
angle range can be a decreasing function of §. The de-
pendence of Eeq on 0 is shown in Fig. 9. For relatively
low intensity satis‘ying

86\ *

Leq 1s given by Eqs. (4.30) and (4.33) and is almost in-
sensitive to the angle unless it is very small. However,
for higher intensity

86\ 2 6\1°
T €l T

and angles satisfying

(4.37)

(1.38)
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6462\ /¢
, (1.39)

2>0
/2> >>(F._,]

the ethbnum energy is given by Eq. (4.36) and varies
as sin” 0. If the angle gets even smaller, that is, if

452\ /4 re\ /8
(7)) »o»os(m)

Floq is given by Eq. (4.33) and does not depend on 0.
Finally, for very small angles

(4.40)

l 1/8 6 1/2
0> (- , 441
onc has
8I°T?
Eeq=FE 142
“a = “R9s2(107 = 4)(10% — 6) (342)
and
o 369\ "'/ ‘
Yeall) = ¥eal0) (1 + -IT) | (1.13)

The mean kinetic energy (4.42) increases sharply with
decreasing 0, and laser cooling is possible only for § >
(2/ V2.

One can see that the minimal equilibriumi energy is
achieved for a small angle € satisfying the condition
(14.40). From Eq. (4.33) one has

# r.G(s
Eu LI L‘q ( T) T:')FT)" (4_.“)
where
. T hf? -
];,q (0 = 5) == —GT (lld)

is the mean equilibrium energy reached for the laser
beams with orthogonal polarizations. Taking into ac-
count I'q. (1.38) one can see that the energy EZ™ ob-
tainabl- for small angles can be significantly smaller than
Eq(0=3).

The results presented above for the equilibrium en-
crgy distribution have been derived using the Fokker-
Planck equation (3.18) with the drift and diffusion coef-
ficients averaged over the optical wavelength. However,
one can deduce from Eq. (4.44) that, for small 4, the
cuergy E:L‘]i“ is smaller than the maximum of the effec-
tive potential Uy. Consequently, an atom having this
cnergy must be strongly localized [17]. This means that,
rigorously speaking, the equilibrium energy distribution
¢(=. p) should strongly depend on the center-of-mass po-
sition 2, and that localization effects must play a signifi-
cant role in the calculation of E. Although the results
obtained using the averaged Fokker-Planck equation are
quite similar for J, = 1/2 and 3/2 atoms, the localization
cffects make these two systems very different. It has been
shown earlier that atomic motion in the vicinities of the
laser field nodes is responsible for a dramatic increase of
the frictional force and decrease of the sub-Doppler-limit
mom ntum diffusion that may eventually lead to mean

energies (4.44) and strong localization. For J, = 1/2 the
potential Up has its minima at the field nodes. Thus an
atom trapped in a region

s L[58\
TT AN

near the field node may experience a very strong fric-
tional force and may be cooled to the energies given by
Eq.(1.44). However, the effective potential Uy of the
Je = 3/2 atom has its minima at the antinodes of the
laser standing wave. As soon as an atomic kinetic energy
becomes smaller than 2Ug(z = 0), an atom is trapped in
the vicinity of the antinode where both the force aud the
sub-Doppler-limit diffusion coefficient are proportional to
02 and are small. As a result, one should have been ex-
pect to obtain weaker localization (6z ~ x/Gk) and the
equilibrium kinetic energy of order Eq(0 = 7/2) for a
wide range of angles 8 .

V. CONCLUSIONS

We have seen that in the one-dimensional field con-
figuration with almost parallel linear polarizations of the
counterpropagating laser beams the considerable increase
of the effective optical relaxation time and the popula-
tion difference gradient near the nodes of the field may
lead to significant cooling and localization of the atomic
particles having J, = -% Identical effects would occur
if the linearly polarized fields were replaced by two cir-
cularly polarized standing-wave fields (polarizations e,
and e_, relative phase shift 8 < 1). Although the cal-
culation has been limited to the J, 1 ground state,
one would expect a similar qualnatwe bci\awor for other
values of J,;. To account for the rapid spatial variation
of the ground-state population difference, new analytical
approaches are needed since n:ethods based on Fourier
series or expansions about v = 0 may converge very
slowly. The need for new analytical techniques is under-
scored if the resuits are generalized to two-dimensional
cooling. In this case, for certain field configurations, we
find a Jepcndence of the friction force which varies as
Fry~azyIn(a? + 02), where ary = kvy y7p.

As an example of a mevhod by which one can measure
directly the dependence of the spatially averaged cool-
ing force on angle 8, we should like to cite the recent
experiment. of Grynberg, Vallet, and Pinard [18]. They
incasured the changes in field intensity as two copropa-
gating waves traverse a medium of J = -l; ground-state
atoms as a function of the frequency difference §' be-
tween the waves. The changes in field intensity can be
related dire ‘ly to the spatially averaged friction force
that would appear in the sub-Doppler-limit laser cooling.
The two fiel’s they used were linearly polarized with an
angle 0 = n;2. The characteristic width they found in
their experiment is consistent with the capture range that
would appear in the sub-Doppler-limit laser cooling. In
the similar type of measurement, by changing angle 0 be-
tween the field polarization directions one might see the
increase of the signal gradient abo:t §’ = 0 correspond-
ing to the increase of the cooling {srce for small angles
found in this paper.
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APPENDIX: DERIVATION OF EQS. (3.2)
AND (3.3)

In this paper we consider atoms Im\inb 5r0und and
excited-state angular momenta J, = ,—, and J,
The atomic density matrix satisfies the cquatlon

[ (]

o
% = ,—'I[p. H] + Rel(p). (A1)

where the Hamiltonian H is given by

))
H= 2’1—[ + Ha + Har, (A2)

h 0 0
II;“‘:)—{ [cos (;—{-k:) <|43/ l/l/ )| + \/_|41/ y_ |/3|> —cos <—§+k:) <|1_

=

with p = Mv and M denoting the atomic momentum and
mass, respectively. In the rotating-wave approximation,
the atomic Hamiltonian If,, is given by

J
Hao=—ht Y o me){Joome. (A3)

me=—J,

For J. = % the interaction part of the Hamiltonian /f.
which describes atom-field coupling, has the form

Hy = hf\/g [cos

0
—€os (‘5‘*’"-‘) |‘—1/2)(!/1/'.'|]- (A1)

[
+ k:) l"l/'z)(g-l/'.'l

where = is the atomic center-of-mass position. In the case
3
Jo = 5 one has

syl + \/-|'—1/ '11/'.'|>]-

(A5)

The relaxation due to spontancous-cmission processes is included in the termm Rel(p).
Using the weak-field condition (1.1) one can adiabatically eliminate the exeited-state populations and excited-
ground-state coherences [1]. For the density matrix in the Wigner representation defined by

plz.p) = (2ah)~! /,;(_‘:—f- -,1—‘41,))— Tl;ll)("l:/hd{[.

. ] . N .
in the J, = < case, one finds the quasistationary solution

1

~

/
Pegrfegziya(poz) = i%m[/nm/: ax12(p — $hk.2)

(AG)

’ 1 - - 3 -
<) LAk »+’, )e nx_,HL)]

PESVERESVAIVE S L

(AT)
and
S S i ) - .
Petrfeerrjep i) = I”m [-/'y;:l/'.'y:pl/’.’(l'v 2)cos{x0 + 2kz)
g gyt kY 4 pepign ggi2p = bk D))+ cc. (A%)

The ground-state populations evolve as

d
PTICERYE: gx1ya(poz) =

if " . "
i'_'\/(—.[/"W/'-':ail/'_'(l' = Lhk ) FEHE G e Sk )T ER R g e
}

[ . .
+§| /:l[( Vg )z opi2(p+ kg )+ (0= ¢ )po g1y cprpo(p + hkq. 2))dy, (AW

where the integral term acconnts for the repopntation of those fevels resulting from the emission of circularly and
finearly polarized photons from the exeited state [T Substituting, Eqgs. (A7) and (AR) mito g (A9) Tor the ground-
state sublevel populations. one arnives at the closed set of equations
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Accesion For
d WE NTIS CRa&I
Tpi(l),:):—F'TT <2pi(p,:)+cos(q:0+2lc:)[pi(p+hk‘:)+pi(p—hk,:)] DTIC TAB
di (&% + 1'2 /4) Unannouncea
26 Justiicatic
+T sin(F0 + 262)pe(p+ bk 2) — pelp = Bk .2} —_—
[ ! o o
o 2 (1 L3 y 4+ hk(g — : ‘bution
o T A s+ R+ 1.2) 4 psp bl = 1).5) '

+2p4(p + hkyq, z)cos(F0 + 2k2)] + (1 — q"’)[/);(p + hk(g+1).2) oF
+pe(p+ hk(q — 1),2) + 2p5(p + hkq, 2) cos(£0 + 2k z)]}dy, o (A10)

where py = p . Y. Qﬁ
‘ Px = Pyx1/2 g1/ \ . ' ﬂ{\_ﬁ Q\,\
For an atom having J. = 3 the corresponding equations are

WE

%/’i(lh )= —m (b‘pi(p, )+ [Beos(£0 + 2k2) + cos(FO + 2k2)[pe(p + bk, 2) + px(p = hk. )]

26 . :
+—F[3 sin(£0 + 2k2) + sin(F0 + 2k2))[pe(p + Wbk 2) — py(p — hk. :)])

Al 1
+W{sl_j]—/x—) /_1{( L4+ ") {02 (p+ Mk(q + 1).2) + 5px(p + hk(g ~ 1).3)
+pe(p+ hbkg, )9 cos(£0 + 2k2) + cos(F0 + 2k2)]}
+2(1 - t/"’)[p;(p + k(g + Do)+ pg(p+ hk(g = 1).2)
+2p5(p+ hky. 2) cos(20 + 2k2)]}dy. (ALl
Equations (A10) and (A1} are exact under the weak-field assumption (1.1). If. in addition, one assumes that an
atomic momentum is much larger than that of the photon. that is

P> hik, {A12)

one can expand these equations to second order in ik to arrive at Egs. (3.2) and (3.3) for J, = 4 and 2 respectively.
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